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The BF3-mediated nucleophilic addition of 2- and 4-methoxy-
methyl-2,4-pentadienylstannanes to aldehydes selectively gives the
corresponding y adducts, while the reaction with sterically hinder-
ed aldehydes affors the corresponding € adducts regardless of the

tin reagents applied.

Recently we reported the selective pentadienyl transfer to carbonyl compounds

D which are known to be fluxional molecules.z)

from 2,4-pentadienylstannanes,
These stannyl reagents, in contrast with the corresponding silyl derivatives,
showed marked reactivity toward versatile carbonyl compounds, including quinones
and o,B-unsaturated carbonyl compounds. Generally, the pentadienyl transfer from

the stannyl reagents occurs exclusively at the € position of the pentadienyl
3,4)

moiety, though the selective Y addition has never been reported (Eq. 1). These
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regioselectivity can be well elucidated by means of frontier molecular orbital

theory and the steric effect.5) &

In the preceding paper, we reported the highly
regioselective preparation of 2,4-pentadienylstannane with an ethereal function-
ality. We reported herein (1) control of the y/e regioselectivity in the penta-
dienyl transfer reaction to aldehydes by coordiantion of Lewis acid to the ethereal
functionality on the pentadienylstannane and (2) remarkable steric effect of the

aldehydes on this regioselectivity.
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Table 12)
. . C)
Tin Product ratio
Run RCHO/ R ,
reagent”) Q Z §
1 Ph 1 7 939)  trace
_ d)
2 p-MeCgH, 1 7 89 4
- d)
3 p-CIC4H, i 4 88 8
- d)
4 p-0,NC_H, 1 2 89 7
S5 (E)-MeCH=CH k trace 93d) 7
- d)
6 n-CyH, 4 1 22 71 7
_ &)
7 0-CIC/H, 1 84 13 3
_ e)
8 2,6-C1,C H, 1 94 0 6
- e)
9 0-0,NC_H, L 74 16 10
10 Ph 2 0 0 100%)
_ f)
11 2,6-C1,C,H, 2 0 0 100
12 (E)-MeCH=CH 2 0 0 100%)

a) All reactions gave the corresponding adducts in more than
90% total yields. b) stereoisomeric purity; k, Z : E=95: 5;

%, Z : E=0:100. c) Determined by 1H NMR of the crude product.
d) anti : syn > 100 : 1. e) trans : cis = 99 : 1. f) E : Z-=
1 : 1.

When the reaction of (E)-2-methoxymethylpentadienylstannane %8) with PhCHO was
conducted in the presence of BFS-OEt2 in CH2012 at -78 °C, the corresponding vy
adduct Z was formed in 937 selectivity (Table 1). This is the first demonstration
of the y addition reaction in the nucleophilic reaction of 2,4-pentadienylstannane.
Other aldehydes also gave the corresponding y adducts in good yields and in high
selectivity (runs 2 - 6). On the other hand, the reaction of the same stannane %
with sterically hindered aldehydes afforded the corresponding ¢ adduct g in excel-
lent selectivities (runs 7 - 9), which rose to 947 in the reaction with 2,6-di-
chlorobenzaldehyde. This marked contrast can be elucidated in terms of both Lewis
acid co-ordination and steric effect (Scheme 1). In the reaction with less steri-
cally hindered aldehydes, Lewis acid would co-ordinate both to the formyl oxygen
atom and to the ethereal oxygen. This co-ordination can accelerate the nucleo-

philic attack on aldehydes at the nearby y carbon atom of the pentadienyl moiety

via transition state é. However, this vy selectivity is very sensitive to the
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structure of the substrates. Increased steric hindrance around the substrate
aldehyde becomes unfavorable to the y attack, which requires more crowded transi-
tion state than the ¢ one, swiching the selectivity from the y attack to the ¢ one
(Table 1, runs 7-9).

It is worth mentioning of the stereoselectivity of the y adducts Z, which in
runs 1-6 were assigned to possess anti configuration in extremely high ratio.g)
This selectivity makes a marked contrast to the syn addition, which was observed

in the reaction of 2—butenyl—11) and 2,4—hexadienylstannane1b) with aldehydes. The
above results support the presence of the bidentatively co-ordinated transition

state 4

4, thus the ethereal oxygen atom on the stannyl reagent plays a key role in a

reversal of the stereoselectivity. The isomeric stannane, 4-methoxymethyl-2,4-

pentadienylstannane 3,8) gave the corresponding € adduct in 1007 selectivity,
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regardless of the structure of aldehydes. 1In this case, the ethereal oxygen can

easily co-ordinate to BF3 and the steric factor at the transition state also favors

the

formation of the ¢ adduct.
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